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INTRODUCTION

Rivers have fascinated generations of hydraulic engineers with their variety
of form and behavior. The large potential benefits of successful river engineering
works, combined with the dire consequences of failures, have provided one
of the earliest and greatest challenges to the profession. Today this challenge
continues to be met in research on river-related processes and by systematic
collection of river data. Much progress has been made in both respects but
it is the writers’ contention that the bias of most engineers towards readily
quantifiable topics has led to a serious gap in this work, the neglect of interpretive
work on river-related landforms. Lane (15) made a similar plea 20 yr ago and
although that paper is often quoted, its message seems to have been largely
ignored. Publication of river data consisting of sets of numbers without descriptive
notes (see, for example, Ref. 5), and general statements about river behavior
made without proper qualifications as to the river type considered are evidence
of this (Refs. 36, 38, and 42 are recent examples).

Rivers are one of the most active agents in shaping the surface of the earth
and the landforms associated with a particular river therefore provide an account,
which may be quite detailed, of the river’s past and present activity. The records
on riverine landforms are far more complete than any other type of river record.
Stereo aerial-photograph coverage at several scales and at different times is
available for virtually all rivers of North America and for many rivers throughout
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the world, whereas hydrometric data are available at only a limited number i
of sites. ]
Many river engineering problems unfortunately lie outside areas where research
or routine observations are presently concentrated and thus have to be solved
by a combination of intuition, past experience of sometimes dubious applicability,
and interpretation of fluvial features as seen on aerial photographs and in the
field. Included under “‘past experience’’ are the many purely empirical design
rules and equations such as the so-called regime *‘theory” or the procedures
for computing reservoir deposition proposed in the well-known manual on ‘“Design
of Small Dams’’ (37). Some examples of such river engineering problems are:
Selecting locations for river crossings by highways, pipelines, or railways, and
selection of the most appropriate method of crossing; location and conceptual
design of water intakes, training works, and wharves: prediction of bank stability
and lateral shift rates; prediction of the location of ice jams and ice scour;
and prediction of mixing characteristics over the range of flows.
Eveninsituations where quantitative methods of computation and the necessary I
data are available, the engineer should check his results against geomorphological i
evidence as may be contained in differences between successive aerial photo- !
graphs and maps, or in plant successions or in systematically shifting rating
curves. Sediment transport computations can sometimes be checked against
growth rates of alluvial fans and deltas or against point bar progression rates
(23); maximum flood levels can be checked with evidence of silt deposition,
ice scour trim lines, deposition of ice rafted material, or evidence contained
in the vegetation. Mixing processes at tributary junctions are identical to those
at effluent outfalls and often clearly identifiable on some types of aerial
photographs or other remote sensing records. Local scour at natural constrictions
or spurs is still one of the most reliable indicators of potential scour at proposed
bridge crossings (24). If geomorphological evidence disagrees with computed
values, as is not infrequently the case, most prudent engineers will give it
precedence.
Interpretation of fluvial features is not a new study and an extensive literature
exists. However much of it is oriented towards the interpretation of geological
history rather than towards deriving present river process rates, hydraulic
parameters, and the associated composition of bed, bank, and flood-plain
materials, the parameters most frequently sought by engineers.
The present contribution presents a general consideration of fluvial morphology,
including a brief review of literature dealing with river channel classification
and interpretaion of fluvial features, emphasizing those contributions that appear
most useful in normal river engineering practice. A classification of riverine
features is proposed that may serve as a checklist in photo interpretation or
field reconnaissance, and permit the concise and consistent description of large
numbers of river sites that may be examined in a project such as a major
pipeline or highway.
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River CLassificATION: PROBLEM AND PAsT APPROACHES

Basic Problem.—Despite the long-time interest of both geomorphologists and
engineers in this subject, no definitive classification exists. Classification of
a river should proceed by individual ‘‘homogeneous reaches;’’ i.e., channel
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reaches (of variable length) within which hydrological, geological, and adjacent
watershed surface conditions remain sufficiently uniform so that a substantially
uniform river morphology results.

The characteristics of a river channel will change wherever a change occurs
in any of the conditions that govern fluvial morphology and reasonably detailed
knowledge of these conditions is therefore an essential prerequisite to the proper
planning of any engineering interference with a river. Evidence regarding the
governing conditions and thus regarding the likely behavior of the channel may
be deduced from channel morphology as displayed on aerial photographs. If,
in addition, a field inspection of the reach is possible, much more can be deduced.
The classification to be proposed herein should be viewed as one of several
tools required to recognize these conditions and their relative importance at
a particular site. The most important ones may be summarized as follows.

Supply of Water and Sediment from Upstream.—This determines the size
of the river channel and many of its morphological features. Whereas sediment
load in the short term is closely related to discharge, in the long run it is
a largely independent consequence of upstream conditions (geology, climate,
land use).

The temporal variability of discharge is important in the following two respects:

1. Rivers with extremely variable discharge from year to year (steep flood
frequency plots) tend to look different from rivers with similar yearly floods,
a fact that is easily confirmed by comparing the outlet channels of large lakes
with nearby rivers of similar setting but unaffected by lake storage.

2. Long-term natural or artificial variations in flow or sediment supply lead
toadjustments in river morphology. A storage and regulation project, for instance,
will in due course convert a river with large flow variations into a much smaller
typical lake outlet channel. Lane (15) gives many other examples. Stevens,
et al. (36) examine changes in river size and form resulting from long-term
natural variations in discharge and show that some rivers appear to be constantly
changing channel form and dimensions.

Nature of Materials through which River Flows.—The materials through which
the river flows influence channel form by determining bank strength and erosion
thresholds. Schumm (27,28) has studied the influence of alluvial sediment
character on channel shape and pattern for sand-bed channels in the mid-western
United States. Recognition of the adjustement of channel form to materials
is also a prominent feature of the Indian regime formulas (2,11).

While the importance of bed material type is widely recognized and authors
on river-related topics rarely fail to pay lip-service to it, the implications remain
widely ignored as the following examples show. Several case histories exist
of degradation downstream from most dams. The exact opposite, aggradation,
appears to be more likely in some gravel-bed channels downstream of large
dams and has in fact been documented (12,34). Bars and bed forms in gravel-bed
channels are distinctly different from those in sand channels, yet this does
not seem to deter engineers from applying ‘‘sand-bed derived’’ sediment transport
and roughness formulas to gravel channels and vice versa (40).

Geomorphological Setting and Geological History.—These conditions are
frequently the most important ones and unfortunately also the most difficult
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e.g., winter ice conditions or permafrost dominate the appearance and form
of many northern rivers, and the stabilizing effects of dense vegetation in humid
regions are well known.

Past Approaches.—Early physiographic classifications of rivers were mainly
concerned with the relationship between river channel patterns and geological
history, or with river-valley relationships in a theoretical cyclical view of landscape
development known as the ‘‘fluvial cycle’ (see Ref. 39 for a recent view of
this concept). Some notions encompassed by this line of reasoning remain useful
under the heading of geomorphological setting.

The earliest attempts at river classification that are useful in the present
context were concerned with the categorization of rivers on alluvial surfaces,
and with the classification of the fluvial sediments themselves. Melton (21)
presented an empirical classification of flood plains and noted the possibility
of relating river morphology as displayed on aerial photographs to aspects of
river behavior. Happ, et al. (9; see also 33) developed a classification of alluvial
deposits which were grouped into several ‘‘associations’ (normal flood plain,
alluvial fan, etc.) which constitute geomorphological settings.

An alternative approach is to directly examine the hydraulic character of
river channels. This has been done empirically by adherents to ‘‘regime theory’
methods with the most extensive classification exercise being that of Simons
and Albertson (35). They recognized six classes of channels (subdivided on
the nature of bed and bank materials) for the purpose of varying the parameters
of their equations. Closely related studies of river channels by means of ‘‘hydraulic
geometry’’ (16) have not, however, revealed any widely evident consistent
variation in channel dimensions attributable to specific imposed conditions. The
third writer (3,4) in particular attempted directly to detect effects of geomorphic
setting and bed and bank materials on hydraulic geometry, with mainly negative
results.

Direct discrimination amongst braided and single thread channels was made
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ones to consider in a systematic manner. Most rivers, except for those set by
on deltas, fans, or broad alluvial plains, are affected significantly by structural ar
or tectonic influences that may impose a slope or a plan form, or by other cC
nonfluvial effects such as glacial activity or slumping valley walls. ar
Most rivers of the northern Great Plains region have clearly imposed slopes bs
as evidenced by the close correspondence between the slope of the land and fc
the slope of the rivers, irrespective of the widely varying nature of some of fc
the major rivers (13). Generally these rivers follow pre-Pleistocene valleys, but ty
occasionally they leave the old valley, and this occurrence is normally associated a
with distinct changes in river behavior. p
In most of North America the geologically recent end of the last major glacial (:
period (about 10,000 yr ago near the 49th parallel) remains a significant factor e

for understanding present river behavior. During much of the period since then,
the rivers have been moving, sorting, and redepositing the major ‘‘slug’ of (
glacially derived sediments; today many rivers flow over lag deposits of glacial I
till or outwash that they are not now competent to move. Adjustments to r
post-glacial crustal rebound and to changing sea levels are probably still in \
progress. Many lakes in northern North America more or less effectively regulate 4
downstream flows, and are themselves a legacy of glaciation. :
Besides these three major conditions, many other factors can affect rivers, t
]
1
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by Leopold and Wolman (17) and by Henderson (10), using discharge, slope,
and bed material size as discriminating variables. Recently, Schumm and
collaborators (31,32) have examined sediment load in this context as well. Neill
and Galay (25) made an attempt at placing river regime evaluation on a systematic
basis but they did not consider channel morphology except by classifying plan
form in the conventional manner. The only general inventory of channel plan
forms is one given by Dury (6), directly from observation. He recognized eight
types: Meandering, braided, straight, straight-simulating, deltaic-distributory,
anabranching, reticulate, and irregular. Chitale (5) gave some analysis on channel
patterns. A recent classification of the plan form of rivers in the Zaire basin
(26) is interesting in recognizing that braiding and meandering are not mutually
exclusive.

On the basis of his studies of river sinuosity and alluvial sediments, Schumm
(29,30), presented the first genetically oriented classification of river channels.
He chose channel stability (in the sense of degrading/stable/aggrading) and
mode of sediment transport as his classification criteria. Allen (1) recast Schumm’s
work in terms of lateral stability of channels and presented a diagrammatic
classification that implied a continuum of channel forms. Mollard (22) and Galay,
and the first and third writers (7) have developed this notion further and are
the first authors to clearly emphasize the continuum of river channel types.
Mollard’s classification is based on plan form of the channel and is restricted
to alluvial reaches with flood plains. Being one-dimensional, the classification
neglects or simplifies many aspects of river morphology. Nevertheless it permits
useful qualitative deductions on the following factors: (1) Discharge variability;
(2) sediment supply and character; (3) ratio of bed material load to total sediment
load; (4) textures of flood-plain sediments; (5) channel gradient; (6) channel
sinuosity; and (7) channel stability. Mollard’s analysis is keyed to aerial-photo-
graph interpretation: His main purpose is to use observed channel pattern and
associated features to make deductions about various parameters required in
engineering studies, with particular emphasis on flood-plain materials. This
remains the most comprehensive work of river channel classification to date.

Standing apart from all these works is a channel classification by Matthes
(20). He defined as ‘‘primary channel types’’ mountain streams, ‘‘hard-bed’
streams, erodible-bed streams, alluvial (meandering) rivers, braided rivers, delta
channels, estuaries, bayous, salt-marsh channels, and lake outlets. In this list,
some regard for geomorphological setting, an aspect missing from most attempts
at classificaion since the early physiographic ones, is implied.

CurassifcaTioN SysTem For FLuviaL FEATURES

The system to be presented herein is intended mainly as an aid to summarizing
descriptive field data gained through aerial-photograph and map interpretation
and through field inspection. It can also serve as a checklist if a large number
of river sites have to be investigated. The system originated with an attempt
to make generally available the results of 108 surveys of river reaches in Alberta
(13). It soon became apparent that tables of hydrologic, hydraulic, and bed
material size data gave only an incomplete account of the useful information
that had been assembled. A classification system with associated coding sheets
was therefore developed to permit the systematic and consistent tabulation of
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additional information, not readily quantifiable.

The general principles on which the classification is based are as follows:
(1) The length of river which can be considered a ‘‘reach’ for the present
codes as variable—the main criterion is homogeneity; (2) the coding proceeds
froma broad view of the general setting to a progressively more detailed description
of the channel banks and bed; (3) the codes incorporate standard terminology
as much as possible; (4) the coded criteria are quantitatively delimited wherever
possible; and (5) multiple codes are used in decreasing order of importance
when one code does not adequately describe the situation.

Slightly modified versions of the two coding sheets are reproduced herein
as Tables 1 and 2 with entries, by way of an example, for Red Deer River
near Sundre, Alberta, Canada, the reach shown in Fig. 1. This reach, in the
Rocky Mountain foothills, has a mean flow of 900 cfs (25 m3/s), a 2-yr flood
of 6,000 cfs (170 m?3/s) and a maximum observed flow of 23,000 cfs (650 m?3/s).
Some of the table entries required examination of the appropriate topographic

FIG. 1.—Red Deer River near Sundre, Alberta: Discharge is 630 cfs (18 m3/s); Stereo

Pair from Vertical Aerial Photographs (Province of Alberta Photographs 1388-5730-
4629-107 and 108)

map and of more extensive photo coverage than is reproduced herein. The
topographic map indicates a river slope of 0.0070. A close-by but morphologically
different reach of the same river is described in Ref. 12.

Some of the codes are trivial and are only included to ensure that the subject
is not forgotten, while others are rather site-specific for conditions in Alberta.
Most users would probably need to modify the system somewhat for their specific
purpose. A detailed description of the system is therefore not warranted but
is available (3). The following analysis will concentrate on those aspects of
the classification which cause most difficulties, or require arbitrary definitions.

Flood Plains, Terraces, and Valley Flat.—Engineers and geomorphologists tend
to assign distinctly different meanings to the term ‘‘flood plain.”” To engineers
it is that part of a valley floor subject to occasional flooding, with different
agencies using various definitions for ‘‘occasional.’’ In a recent paper the 100-yr
flood is advocated (19), while in British Columbia the 200-yr flood has been
adopted. To geomorphologists the flood plain is a surface developed at the
present river level through erosion and sediment deposition associated with
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ral migration and overbank flooding. Terraces are similar surfaces developed
ome time in the past at a higher elevation.
‘onsidering that an area subject to flooding at some arbitrary recurrence
rrval may include several distinct fluvial features and will therefore be difficult
dentify on aerial photographs, and considering further that extreme floods
particularly severe ice jams can cause the flooding of areas that both engineers
geomorphologists would normally call ‘‘terraces,’” the engineering use of
yod plain’’ was abandoned and the term reserved for alluvial surfaces presently
1g developed by the river. The term ‘‘valley flat’’ was adopted for relatively
surfaces on the valley floor subject to flooding and carries no genetic
llication. The distinction between genetic flood plains and low terraces can
guite difficult and is often not required for engineering purposes (41).
livers that are both shifting laterally and degrading slowly produce gently
lined slip-off slopes or stair-like sequences of terrace levels that grade gradually
) a valley flat. From an engineering point of view, the difference has great
rificance as some parts of such surfaces may be beyond most flood levels
I the river will have greater lateral stability than in the case of a true flood
in. The valley flat must then be limited at some arbitrarily selected elevation
t may be defined by a recurrence interval if sufficient data are available.
‘erraces are generally covered by a capping of deposits similar to flood-plain
rosits, possibly modified by various terrestrial processes (wind action, soil
mation). The underlying material may be anything from alluvium (thus, alluvial
-ace) to till or bedrock. Distinguishing between these is often important,
e a bedrock terrace will offer more resistance to erosion than one composed
overburden. Sometimes this can be achieved either through knowledge of
recent geologic history of a region or through careful examination of cut-banks
ere the terrace is under attack by the river.
“are must be exercised in using the terms ‘“‘rock’’ and ‘‘bedrock’’ in order
avoid misleading connotations of solidly lithified erosion-resistant material.
dlogically, any body of sediment that has not been modified by weathering
»y organic soild formation since its deposition constitutes a ‘‘rock formation;”’
term ‘‘bedrock’ is reserved for lithified material, but this still allows a
le range of erosion resistance. On the Great Plains, bedrock frequently includes
ely-indurated mudstones or shales that turn quickly to clays on exposure,
poorly cemented sandstones that easily disintegrate.
7ig. 1 shows a situation with a discontinuous genetic flood plain and several
+ terrace levels. Collectively they make up a continuous valley flat. There
also a prominent high alluvial terrace, dissected by a tributary. All these
tures are underlain by late Quaternary alluvium.
telation between River Channel and Its Valley.—The interaction between a
or channel and its valley is of significance for many engineering projects
1 yet there is no widely accepted approach to dealing with this topic.
Vot all river reaches are associated with valleys: Those on aggradational
tures such as fans, deltas, and broad alluvial plains are essentially independent
any valley. If there is a valley, it may or may not be stream-cut and if
s stream-cut, this may have been done by a much larger river than the
nderfit’’ stream presently occupying it. Actively slumping valley walls may
an important constraint, often recognizable by irregular river width wherever
river flows along a valley wall.
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Two aspects of the river-valley interaction must be examined in most situations:
(1) Relation of the channel to the valley flat; and (2) the relation of the channel
to the valley walls. Proposed classification for the first item is as follows:

1. Aggrading: Deltaic reaches and braided reaches filling the entire valley
floor. Channel avulsions, which can present a serious threat to many engineering
structures, are associated with most aggrading situations.

2. Not obviously degrading or aggrading: River reach associated with a low
valley flat that appears to be a genetic flood plain. According to Wolman and
Leopold (41) slow aggradation or degradation are not incompatible with the
presence of a genetic flood plain.

3. Partly entrenched: Short segments of the reach are entrenched in alluvial
or in nonalluvial materials.

4. Entrenched: River reaches with no associated valley flat.

Entrenched channels are frequently degrading but it is dangerous to assume
that this is necessarily the case. Deep entrenchment followed by a period of
aggradation leads to situations in which the channel still appears entrenched.

A classification of the second item, the relation between channel and valley
wall, is as follows: (1) Occasionally confined—the river is occasionally deflected
by the valley wall or by a resistant terrace; (2) frequently confined—as in
No. 1 but more frequent; (3) confined—the river is regularly deflected by the
valley walls or by terraces; and (4) entrenched—by definition, any entrenched
channel is also continuously confined. The channel of Fig. 1 is best classified
as “‘not obviously aggrading or degrading,’” although “‘partly entrenched’’ could
also be justified by the discontinuous nature of the genetic flood plain. The
channel is “‘frequently confined’’ by high alluvial terraces and “‘occasionally
confined’’ by the valley wall (beyond the stereo coverage).

Channel Description.—The widely used classification of plan form as meander-
ingstraight, or braided (for example, Ref. 17) is unsatisfactory for several reasons,
the main one being that the terms are not mutually exclusive. Single thread
channels can meander in various distinctly different modes. Multiple or split
channels present even greater difficulties since a range from infrequent channel
islands, through frequent islands to multiple channels and, finally, truly braided
channels occurs. Some split channels meander distinctly and, to complicate
the issue further, there is also a complete sequence from usually flooded channel
bars, with surface levels well below the valley flat, through islands at the valley
flatlevel to islands at high terrace levels. Plan form is therefore stage dependent.

The proposed solution is to describe channel features under three main headings:
(1) Channel pattern; (2) islands; and (3) channel bars and major bed forms.
The channel should be primarily described near mean flow, with notes added
if the pattern changes distinctly at higher or lower stages. Flows near the mean
have a relatively high probability of occurring and being photographed: Descrip-
tions derived from photographs of extreme conditions should be so notated.

Channel Pattern.—The channel pattern classification is shown in Fig. 2 and
consists of the following terms:

1. Straight: Very little curvature within reach; occurs mainly in braided
channels, delta distributaries, and structurally controlled channels.
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2. Sinuous: Slight curvature with a belt width of less than approximately
two channel widths.

3. Irregular: No repeatable pattern; structurally controlled angular patterns
would be classified ‘‘irregular’’ with appropriate comment. Many braided and
split channels fall into this category.

4. Irregular meanders: A repeated pattern is vaguely present in the channel

1 STRAIGHT 4. IRREGULAR MEANDERS

2 SINUUUS

\/\/ 5 REGULAR MEANDERS
3 IRREGULAR W
W confined pattern

6. TORTUOUS MEANDERS

FIG. 2.—Codification of River Channel Patterns
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1 CHANNEL SIDE BARS

1. OCCASIONAL
0 averlapping of islands average spating being tes o1 mors rlves widths

RN =
w

2. FREQUENT
“frequent overlapging, with the average spacing being less than ten river widths

3 shuT
[iands overlipp islindy mverlap frequent’y or contauously  The number
of tlaw channehy Is inuslly twa of three

..M
. :::v‘?:al:uh divided by river bars and slands {see (el for further comments) 7. SAND WAVES, LINGUOID BARS. OR LARGER DUNES
SEES - F o>
FIG. 3.—Cadification of Islands FIG. 4.—Cadification of River Channel

Bars

plan; free meanders of sand-bed channels with high bed load, and many entrenched
meanders are irregular.

5. Regular meanders: Characterized by a clearly repeated pattern. The angle
between the channel and the general valley trend is less than 90°; confined
meanders are often exceedingly regular. Freely meandering gravel-bed channels
on a relatively steep slope may also be regular.
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6. Tortuous meanders: A more or less repeated pattern characterized by angles
greater than 90° between the channel axis and the valley trend; this pattern
is frequently associated with free meanders of sand-bed streams in flood plains
dominated by vertical accretion. Many underfit streams belong in this group.
Steep streams entrenched in very soft bedrock can also adopt a tortuous pattern.

Islands.—The island classification is shown in Fig. 3. At the long-term mean
flow islands and some major bars may be exposed but islands are relatively
stable, frequently vegetated, and reach to or at least close to valley flat level.
In departure from established terminology, the present classification allows a
channel such as the one shown in Fig. ! to be classified as “‘irregular meanders”’
under pattern and *‘split”’ under islands. Braided channels represent a particularly
difficult problem for classification. Though they appear as a congeries of
channelways and partly exposed bars at most stages, the channel details may
disappear under a continuous sheet of water in high floods. Nevertheless, rarely
flooded islands may also persist in the channel zone. Though frequently named
as an end-member type in traditional classifications of pattern, braided channels
represent a singular combination of features from all three elements of our
codification.

Channel Bars.—Channel bars and major bed forms are shown in Fig. 4.
They probably contain more information on channel processes and bed load
sediment transport in particular than any other river features, but due to the
unfortunate preoccupation of river-related research with two-dimensional flume
experimentation much of this information remains undeveloped. The primary
bed form sequence (ripples, dunes, antidunes) will not be considered as these
will only fortuitously be identifiable on aerial photographs. The proposed
classification of bars is as follows:

1. None (apparent): Channels eroded in clay or other resistant materials,
narrowly constricted channels, and very flat generally aggrading reaches in fine
alluvial materials (typically fine sand bed, clay banks), may not exhibit any
bars.

2. Side bars: In entrenched straight or sinuous channels, side bars may develop
and force the low-flow channel into a more meandering path. In very straight
channels they may migrate and their migration rate can be used for a lower
bound bed load estimate. More frequently their position is associated with slight
channel bends and therefore stable. Channels that periodically carry high
suspended sediment loads often develop side bars as temporary storage points
for some of that material.

3. Point bars: These features form on the inside of well-developed bends.
Dunes on the point bar are indicated by ragged edges of the water surface
and are normally associated with relatively coarse sand beds. In gravel beds,
point bars are often extensions of diagonal bars (mentioned subsequently).

4. Channel junction bars: Where a tributary joins a larger river, a bar frequently
occurs immediately downstream, or on both sides of the tributary mouth. This
represents a storage point for sediment delivered by the tributary that is not
immediately moved on.

5. Midchannel bars: One type of midchannel bar typically found in the larger
gravel-bed channels has been described by Galay and Neill (8). It has a
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crescent-shaped plan form similar to barchan dunes, with grain-size decreasing
along the bar. In the lee of the bar, between the horns, suspended load material
tends to accumulate. The bar position remains stable over decades with bed
load transport taking place across the bar. In cross section, the bars are often
very regular inverted parabolas. The top of the bar surface corresponds closely
to the top of gravel deposits under adjoining flood plains, with the flood-plain
level being some 3 ft-10 ft higher due to suspended load deposits of fine sand
and silt. Deposition of suspended load in the lee of log jams, that tend to
form on midchannel bars, sometimes converts them into islands. Fig. 1 shows
various stages of this process.

6. Diamond bars: Also called linguoid bars or ‘‘spool”’ bars by sedimentologists,
they are an extreme development of midchannel bars characteristic of braided
rivers in sand or gravel (see Ref. 14). The surfaces usually become flat on
top and the constricted channelways between them often form erosional chutes,
which produces a very regular appearance.

7. Diagonal bars: This type of bar occurs only in gravel-bed channels, being
particularly common in the smaller ones. At lower flows the bar is associated
with a riffle and the river may cut several shallow channels across the bar.
The bars do not move significantly over time spans of several decades. Most
of the exposed bars in Fig. 1 are diagonal bars.

8. Sand waves, linguoid bars, or large dunes: This type of bar is common
in relatively active sand-bed channels. In early development they form relatively
featureless shoals in many comparatively wide channels. When fully developed,
they may be crescent-shaped with horns pointing upstream or may appear as
a sand sheet, shoaling to a front that runs diagonally across the river. The
most characteristic feature, which distinguishes them from midchannel bars,
is the dune-like profile, with a gentle upstream side and a downstream side
at the angle of repose. The length of such bars is of order channel width,
and the height is normally more than 50% of mean bankfull depth. The bars
move and are therefore suitable for lower-bound bed load estimates. Much
smaller dunes of the type observed frequently in flume studies may occur on
the upstream slope.

From the type of bars and the presence or absence of bed forms, it is normally
possible to distinguish between sand and gravel-bed channels. In the case of
sand-bed channels, more accurate bed material size estimates are not required
for rough calculations. In gravel-bed channels, bed material size is important
and can only be estimated in the field.

Lateral Channel Activity.—This code attempts to describe the predominant
type of lateral channel activity in the reach. Care must be exercised in distinguish-
ing between presently active processes and those active at an earlier stage, but
whose traces may be well preserved on the valley flat. Features that assist
in the evaluation of this code are meander scrolls (scroll bars, point bar deposits),
meander scars, linear vegetation patterns, cutoffs and oxbows, and former channel
or channel bar patterns on the present flood plain. The code is shown in Fig.
5 and consists of the following terms:

1. Not detectable: No signs of lateral movement (deeply entrenched channels,
generally).
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2. Downstream progression: The whole meander pattern moves downstream
without forming cutoffs; frequently associated with confined regular meanders
but also possible in steep gravel-bed channels.

3. Progression and cutoffs: Common on well-developed flood plains of mean-
dering rivers.

1. DOWNSTREAM PROGRESSION

\:/a

point bar deposits

~ o
terrace scarp % aad

5. IRREGULAR LATERAL ACTIVITY

side channel or slough

6. AVULSION

FIG. 5.—Lateral Activity of River Channels

4. Mainly cutoffs: Typical for low-gradient streams with a flood plain consisting
mainly of vertical accretion deposits.
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into relatively easily erodible materials.
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channels frequently fall into this group. The occurrence of side channels, chutes,
and sloughs, indicating shifts in the main channel position, is typical. The river
shown in Fig. 1 falls into this category.

7. Avulsions: Aggrading streams may break out of levees or former channel
zones completely and adopt an entirely new course. In deltaic marshes, breached
levees and crevasse splays indicate partial or total redirection of flow.

ConcLusions

Consistent river channel classification, with emphasis on those aspects of
river behavior that are most important in practical river engineering problems,
is a prerequisite to the study of river processes, but existing classifications
are procrustean beds for the wide variety of river forms that commonly occur
in nature. A classification system is developed that makes allowance for the
gradual transitions between classical channel types, whilst relying extensively
on existing terminology. The details of any practical classification system should
depend on both the objective of the job and on local river types.

Any analysis of river behavior or publication of river data should be qualified
as to river type. The paper has emphasized classification from aerial photographs
and has concentrated on those aspects that are judged most difficult to deal
with and most important. The classification scheme remains useful in combined
office and field investigations, whether the field phase represents one-trip
reconnaissance or the beginning of systematic observations. Classification is
particularly appropriate in the early stages of large-scale regional projects, such
as route selection for highways or pipelines, when field records will not be
available for many rivers. An application of the classification methods examined
herein in the context of field reconnaissance for northern pipeline routes is
provided by Lewis and McDonald (18). In all events, field investigation remains
essential for the advanced stages of any project.
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