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ABSTRACT

Dams and water diversions can dramatically alter the hydraulic habitats of stream ecosystems. Predicting how water depth and velocity
respond to flow alteration is possible using hydraulic models, such as Physical Habitat Simulation (PHABSIM); however, such models
are expensive to implement and typically describe only a short length of stream (102m). If science is to keep pace with development, then
more rapid and cost-effective models are needed. We developed a generalized habitat model (GHM) for brown and rainbow trout that makes
similar predictions to PHABSIM models but offers a demonstrated reduction in survey effort for Colorado Rocky Mountain streams. This
model combines the best features of GHMs developed elsewhere, including the options of desktop (no-survey) or rapid-survey models.
Habitat–flow curves produced by PHABSIM were simplified to just two site-specific components: (i) Q95h (flow at 95% of maximum
habitat) and (ii) Shape. The Shape component describes the habitat–flow curves made dimensionless by dividing flow increments by
Q95h and dividing habitat (weighted usable area) increments by maximum habitat. Both components were predicted from desktop variables,
including mean annual flow, using linear regression. The rapid-survey GHM produced better predictions of observed habitat than the desktop
GHM (rapid-survey model explained 82–89% variance for independent validation sites; desktop 68–85%). The predictive success of these
GHMs was similar to other published models, but survey effort to achieve that success was substantially reduced. Habitat predicted by the
desktop GHM (using geographic information system data) was significantly correlated with the abundance of large brown trout (p< 0.01)
but not smaller trout. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Flow regimes in the western USA and other semi-arid
regions have been altered by the many dams and diversions
constructed to meet water demands (Graf, 1999; WCD,
2000). The consequences for stream ecosystems have
included the collapse of fisheries (Kareiva et al., 2000) and
extinction of native fishes (Bestgen et al., 2006; Falke
et al., 2011). Successfully managing flow alteration to pre-
vent such impacts requires sound science that recognizes
the broader physical constraints on ecosystems. The effects
of flow alteration on fish populations depend on large-scale
processes (e.g. temperature and flood frequency) that
constrain the number of species surviving to respond to
small-scale processes, such as water velocity at baseflow
(Poff, 1997). Within this context, the importance of hydrau-
lic habitat (depth and velocity) as a physical constraint is well
*Correspondence to: T.K. Wilding, Department of Biology, Colorado State
University, Fort Collins, Colorado, USA.
E-mail: tkwilding@gmail.com
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established for trout in flowing waters, from observational
and experimental studies at a range of scales (Bachman,
1984; Fausch, 1984; Jowett, 1990; Jowett, 1992).
Hydraulic habitat methods, such as Physical Habitat

Simulation (PHABSIM), River Hydraulics and Habitat
Simulation and River2D, predict the change in velocity
and depth with flow, based on intensive surveys and calibra-
tions of points in a stream reach (Annear et al., 2004). By
comparing depths and velocities predicted by the hydraulic
model to the observed depths and velocities used by trout
[habitat suitability criteria (HSC)], these methods can gener-
ate habitat–flow curves [plots of the change in the weighted
usable area (WUA) with flow]. These habitat–flow curves
are not a prediction of trout biomass. Instead, they were
developed to provide a better understanding of how the
hydraulic habitat of trout changes in response to flow alter-
ation, within the context of broader physical constraints
(Milhous and Bartholow, 2006). A major hurdle for the
implementation of conventional hydraulic habitat methods
is the cost (Nehring, 1979; Estes and Orsborn, 1986;
Souchon and Capra, 2004). This presents a barrier to
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carrying out such assessments, other than for large develop-
ments (e.g. dams or large diversions).
Flow management decisions are required for the vast

majority of the stream network not regulated by large dams
(e.g. for small run-of-river diversions). Poff et al. (2010)
recognized the pressing need to develop regional-scale
methods, based on data from reach-specific surveys, in order
for science to keep pace with development. Generalized
habitat models (GHMs) can help meet this need for regional
coverage, as already demonstrated for some regions
(Lamouroux and Capra, 2002; Lamouroux and Jowett,
2005; Booker and Acreman, 2007; Saraeva and Hardy,
2009a). Once developed, a GHM can reduce the survey
effort needed to predict habitat–flow response, compared with
additional PHABSIM or River2D surveys. The GHMs also
make better use of prior knowledge of habitat–flow response,
compared with rapid-survey methods, such as R2CROSS
(Espegren, 1996). The steps in producing a GHM include
the following:

(1) surveying hydraulic habitat to generate habitat–flow curves
for a sample of stream reaches (e.g. using PHABSIM);

(2) fitting a function to the habitat–flow curve and
extracting function components for each reach;

(3) using the observed sample of reaches to train a statistical
model that predicts the components from selected
predictor variables that can be obtained for many sites
across a region with an acceptable level of effort; and

(4) generating habitat–flow curves for new reaches where
predictor variables are known.

We reviewed existing GHMs to illuminate the best way
forward. The GHM developed by Lamouroux and Capra
(2002) successfully predicted habitat–flow curves (89%
explained variance for adult brown trout), but predictions
were based on reach attributes calculated from the intensive
surveys (e.g. Froude number). The degree to which survey
effort is actually reduced in applying the model to new sites
remains in question.
More recent research has explicitly described the survey

effort required for model implementation. For example,
models by Booker and Acreman (2007) used watershed
descriptors, or single-survey hydraulic data, to predict
habitat–flow curves. The use of three unknown parameters
for the habitat–flow function by Booker and Acreman
(2007) produced a less parsimonious GHM that is more
susceptible to parameter instability than functions used by
Lamouroux and Capra (2002). Saraeva and Hardy (2009a)
demonstrated the benefit of hydrogeomorphic classification
in reducing the number of intensive studies required to make
predictions. Their direct scaling of habitat–flow curves to
21 hydrogeomorphic classes achieved an area of application
(3500 km2 watershed) smaller than was achieved using
Copyright © 2013 John Wiley & Sons, Ltd.
statistical models elsewhere (e.g. France—Lamouroux and
Capra, 2002; England—Booker and Acreman, 2007).
In this study, we combine the best features of previous

models into one new GHM for the southern Rocky
Mountains in Colorado. The resulting GHM provides a
demonstrated reduction in survey effort with a desktop
(remote-sensing data) and rapid-survey option (after Booker
and Acreman (2007)), which minimizes the number of
unknown function parameters (after Lamouroux and Capra
(2002)) and exploits the hydrogeomorphic commonalities
of the Rocky Mountains to reduce the number of intensive
surveys required to train the GHM (after Saraeva and Hardy
(2009a)). In addition, we used a similar approach to Saraeva
and Hardy (2009b) for simplifying the PHABSIM predic-
tions by omitting substrate cover and using per cent of
maximum habitat rather than WUA. Our intention was not
to replicate exactly the output from PHABSIM but to pro-
vide a biologically informative model that was developed
and tested using the PHABSIM data. The successful interro-
gation of the habitat–flow predictions against observed trout
abundance data therefore represents a vital step forward in
demonstrating the validity of GHMs.
This article focuses on the hydraulic habitat (velocity

and depth) of brown (Salmo trutta) and rainbow trout
(Oncorhynchus mykiss) and how it changes with flow,
recognizing that hydraulic habitat is one of several important
constraints on trout populations (Milhous and Bartholow,
2006). The objective of this study was to develop GHMs
for brown and rainbow trout that minimize data collection
and maximize the area of application in Colorado using
geographic information system data and easily obtained
field measurements.
Success of the models was judged by two criteria: first, by

better correlations with trout abundance than the Tennant
(1976) method that provides thresholds based on per cent
of mean annual flow (MAF) and, second, by demonstrating
less survey effort than PHABSIM and River2D methods.
METHODS

The flow chart in Figure 1 summarizes the steps used to
construct the GHMs for Rocky Mountain streams, with
more detailed methods following.

Study sites

Data were obtained for 24 PHABSIM surveys in the Rocky
Mountains to train the GHM (Table I). Survey data were
obtained from the Colorado Division of Wildlife (Nehring
and Anderson, 1993), HabiTech, GEI Consultants, Miller
Ecological Consultants, Inc. and Stantec (Fleece, 2011).
All but the Stantec survey were completed in the 1980s.
Survey methods varied between sites to some extent, and
River Res. Applic. (2013)
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Figure 1. Flow chart summarizing our methods. The name of data
analysis software is given in parentheses, including the name of pack
ages implemented using R Project software. TNC, The Nature Con
servancy; PHABSIM, Physical Habitat Simulation; NLME

nonlinear mixed effects

GENERALIZED HABITAT MODELS FOR TROUT
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differences included the number of cross sections and the range
of calibration flows (Table I). The impacts of dams and
diversions provided the impetus for PHABSIM studies, with
the actual surveys conducted further downstream in reaches
supporting significant fisheries (e.g. Gold Medal fisheries).
To place the study sites in a broader physical context of

regional-scale constraints (sensu Poff (1997)), site distribu-
tion was compared with all Colorado reaches (using data
from NHDPlus). The probability of site occurrence was
calculated using Maxent statistical software (Phillips and
Dudík, 2008; Dudik et al., 2010) with re-sampling from
20 875 Colorado reaches as background data (model area
under the curve = 0.907). This demonstrated that site selec-
tion was biased to large, cool streams of Colorado, as
depicted in Box 1. Most PHABSIM study sites had a tem-
perature between 6 and 13 �C (annual average watershed
air temperature) and a MAF between 1.8 and 14m3 s�1

(the smallest site was 0.2m3 s�1). The coincidence of popu-
lar coldwater fishing sites (State Wildlife Areas) with high
probability reaches (>0.5) suggests that site bias reflects
trout fishery bias. Snowmelt is the primary source of flow
for these rivers (rather than rain), typically producing
predictable timing of peak flows between late April and
early July (class SN1 of Poff (1996)).

Desktop predictor variables

An initial set of desktop variables was retrieved from a geo-
graphic information system database provided by The Nature
Conservancy for Colorado streams. Most attributes were
sourced from NHDPlus (see www.horizon-systems.com).
The database describes individual reaches that were delineated
by tributary confluences, each with a unique identifier
(COMID) and attributes. We selected a subset of attributes
with expected mechanistic links to hydraulic habitat (Table II).
For the snowmelt streams of the RockyMountains, MAF is

a useful metric of relative stream size that also represents flow
magnitude during the warmest months. For example, flows for
the Arkansas River (at USGS 07091200, 1989–2006)
averaged 108% ofMAF for August–September when temper-
atures averaged 92% of the annual maximum (of monthly
means). Values of MAF for Rocky Mountain streams were
estimated for NHDPlus using the equations from Vogel
et al. (1999). This set of models uses watershed average
precipitation and temperature calculated from PRISM data
(Daly et al., 1997), in addition to watershed area (i.e. the
watershed upstream of each reach). Estimates of MAF were
validated for our study using USGS gauge data (pre-diversion
or reconstructed using diversion records). Estimates were
generally close to the observed data; the exceptions being
the Arkansas River and Cache la Poudre River, for which
we developed revised water-balance models (described in
Appendix 1 of Wilding (2012)).

Rapid-survey method

Rapid-survey GHMs can provide an intermediate level of
assessment between a desktop GHM and a full PHABSIM
survey. Width provides a measure of stream size that can
be used in rapid-survey models. Because width varies with
flow at a cross section, we chose the width at MAF as a
standardized metric and modelled this in PHABSIM from
survey data. The next step was to identify a rapid method
for estimating width at MAF that required less survey effort
than a full PHABSIM survey. The breakpoint width was es-
timated visually from plots of width versus average depth
(breakpoint where width declines more rapidly towards zero)
in a pilot study using 117 cross sections from 17 reaches in
River Res. Applic. (2013)
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Box 1. Bias in site selection across Colorado based on temperature andmean annual flow,which translated to large, cool streams. The coincidence of
popular coldwater fishing sites (State Wildlife Areas) with high probability reaches (>0.5) suggests that site bias reflects trout fishery bias. Three
probability classes are displayed (blue 0.5–0.75, green 0.35–0.5 and red 0.2-0.35). Physical Habitat Simulation sites are illustrated as black dots
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Colorado’s Rocky Mountains (see Appendix 2 in Wilding
(2012) for more description). Estimating the breakpoint width
only requires survey data from one site visit with no velocity
measurements, so it is more rapid than PHABSIM.
For physical validation sites lacking cross-sectional data,

the rapid-survey width was instead measured as the visibly
wet or unvegetated channel from aerial photographs in
Google Earth (10–20 cross sections randomly selected over
the reach). This aerial photograph method is further
described in Appendix 4 of Wilding (2012).
Hydraulic modelling

We remodelled all 24 of the existing PHABSIM surveys
using PHABSIM software (Windows version 1.20; Waddle,
Table II. Description of selected desktop variables developed by The Na

MAF+ Mean annual flow (m3 s�1) natural estimate;
MAF Alt.* Per cent flow alteration from transbasin dive

last 2008) plus predicted agriculture cons
(Arkansas), 1.54 (Colorado), 1.45 (Dolore
(South Platte) or 1.17 (Yampa)]

Elevation+ Reach-average elevation of blue line (m) an
Reach slope+ Slope of blue line over the reach (% slope =
Watershed slope+ Slope of blue line averaged over the watersh
Dam storage density* Reservoir storage volume/total annual runo

Reservoir volume data from the National Inv
Riparian width* Modelled width of flood influence (km); Ln

Transformations for subsequent analysis are also detailed, with addition of valu
non-zero values.

Copyright © 2013 John Wiley & Sons, Ltd.
2001) in pursuit of consistent model settings across sites.
Some deviations were necessary for sites where different
survey methods were used. Water surface levels were
modelled using stage–discharge relationships (STGQ model
using log–log linear regression) if calibration data were
available and adequate (water surface profile models were
necessary only for the Dolores River and Fraser River Site
#1). The smallest sites (Little Vasquez and Vasquez) were
removed at this point because the calibration of ratings was
not adequate at higher flows, leaving 22 PHABSIM surveys
to train the GHM. In PHABSIM, velocity was predicted using
Manning’s n values for each survey point at each flow incre-
ment (VELSIM in PHABSIM). Velocity adjustment factors
(VAF IOC 11) were used to adjust observed Manning’s
n values for reduced roughness as depth increases. We wanted
ture Conservancy* and NHDPlus+ for Colorado streams

Ln(x+ 1) transformed and coded “In.maf1”.
rsions (quantified in HydroBase at http://cdss.state.co.us, accessed
umptive use [acre feet calculated as irrigated acres times 1.85
s), 1.79(Gunnison), 0.83 (North Platte), 1.75(Rio Grande), 1.75

d coded “elevtn”.
100�mm�1); Ln(x) transformed and coded “In.gradR”.
ed (% slope) and coded “gradWS”
ff (m3m�3); Ln(x+ 0.1) transformed and coded “In.dam_stor0.1”;
entory of Dams were manually checked against alternative sources.
(x+ 0.001) transformed, and coded “In.rip_width.001”.

es smaller than 1 (as in Ln[x+ 1]) necessary to normalize data with small
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to model specific habitat increments in order to train the GHM
at flows less than maximum habitat; however, PHABSIM pre-
dicts hydraulic habitat at the flow increments (not the habitat
increments) that are nominated by the user for each site.
Obtaining the desired increments (maximum habitat, 95% of
maximum habitat, plus nine increments at lower flows) there-
fore necessitated iterative remodelling and some interpolation
between flow increments.
Selection of habitat suitability criteria

The PHABSIM uses HSC to convert predicted depths and
velocities to hydraulic habitat. Separate GHMs were
produced for the HSC selected for this study to represent
brown and rainbow trout (Figure 2). A full description of
the testing and derivation of all HSC is provided in Wilding
(2012). The ‘Cheesman’ HSC (Thomas and Bovee, 1993;
Shuler and Nehring, 1994) for adult brown and rainbow
trout (BT2 and RT2) were modified by increasing the
suitability of deep water to 1 (at deeper than optimum),
because our re-analysis indicated that low catch rates in
deeper water were an artefact of the rarity of deeper pools.
This re-analysis used Maxent (Phillips and Dudík, 2008;
Figure 2. Habitat suitability criteria (HSC) for velocity and depth
(y-axis standardized to maximum suitability of 1). The Cheesman
HSC for adult brown and rainbow trout (BT2 and RT2) were
modified from Shuler and Nehring (1994). The size-guild HSC were
developed for this investigation, with trout separated only by life
stage (juvenile T1 and adult T2) rather than by species (as described

in Wilding (2012))

Copyright © 2013 John Wiley & Sons, Ltd.
Dudik et al., 2010) to better contrast the occupied habitat
(presence) with the sampled habitat (target-group back-
ground) and avoid interpreting absences as avoidance.
Maxent was also used to develop new HSC for this investi-
gation, with trout separated only by size guild (juvenile T1
or adult T2) rather than by species. The new HSC were
based on the same trout observations that were used to
develop the Cheesman HSC plus data from the Cache la
Poudre River (both described in Thomas and Bovee
(1993)). Juvenile trout were 7–17 cm (assumed age of
1 year) and adult trout ≥17 cm (assumed age of 2+ years)
(Thomas and Bovee, 1993).
In an effort to simplify and improve the GHM, substrate

and cover were not included as components of habitat suit-
ability. A pilot study using data from 107 cross sections
from the Cache la Poudre River (Gard, 2005) supported
omitting substrate/cover, as it had little effect on the habi-
tat–flow curves after standardizing hydraulic habitat by
the maximum WUA (mean absolute deviation 2.8% of
habitat between substrate off and substrate on for juvenile
rainbow trout, paired t-test p = 0.28, n = 26). This is consis-
tent with Ayllón et al. (2011), who reported substrate/cover
had more effect on habitat magnitude (WUA) than on the
shape of the habitat–flow curves. Note that the 11
PHABSIM surveys used for the physical validation of the
GHM retained substrate/cover in the HSC. Therefore,
the reported GHM prediction error includes any real
change in substrate suitability with flow. Several species
and life stages were not included in the Colorado GHM,
including substrate-dependent spawning habitat, because
the GHM is not intended to comprehensively portray the
ecosystem response.
Modelling generalized habitat

With the aim of generating habitat–flow curves for
unsurveyed streams of the RockyMountains, we decomposed
the habitat–flow curves produced by PHABSIM into
three components:

• Q95h—flow providing 95% of maximum habitat (at flows
less than maximum habitat).

• Shape—the shape of the dimensionless habitat–flow
curve. Habitat was converted to a per cent of Maximum
Habitat, and flow was converted to a per cent of the Q95h.

• Maximum Habitat—maximum WUA.
The first two components, Q95h and Shape, are expected to
be most useful for flow management, when used together. By
omitting Maximum Habitat (third component), the modelling
burden is reduced while still producing informative relation-
ships for flow management.
River Res. Applic. (2013)
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Q95h component. For Q95h, we chose the flow at 95% of
maximum habitat as the flow metric, because it was less
variable than the logical alternative of 100%. The point of
maximum habitat can be poorly defined, with a wide range
of flows offering close to maximum habitat (reflecting
surveyed river morphology and the HSC used). The
selection of 95% was based on another pilot study (Cache
la Poudre River data from Gard (2005)), comparing 50 sub-
samples of six cross sections randomly selected from the
‘population’ of 107 cross sections. The standard deviation of
these replicates was nearly halved by using the flow at 95%
instead of 100% (standard deviation 1.17m3 s�1 for 100%
and 0.60m3 s�1 for 95%, analysis of variance p< 0.001,
F=250, n=50).
Shape component. A dimensionless Shape function was
selected for each reach using the better fitting of two
functions—quadratic or exponential. The vertex form of
the quadratic equation (y =A[x +B/2A]2 + ymax) was used
because ymax was known (i.e. 95% of maximum habitat
provides the y-coordinate of a known turning point).

Quadratic function: HVij ¼ A Qij=Q95hi þ Bi= 2Að Þ
� �2

þ 0:95 þ eij

where subscript i denotes the individual reach and subscript
j denotes the individual flow increments for each reach. The
dimensionless response variable HV is the hydraulic habitat
value, expressed as a proportion of maximum habitat. The
independent variable Q is the flow, divided by Q95h to repre-
sent dimensionless flow (Qmust be constrained to values less
than Q95h, because HV is underestimated at higher values).
Improved model performance was achieved by allowing
B to vary across the reaches (cf. assuming B/2A= xmax = 1),
together with a fixed value of A.
The second function is a modified version of the exponential

function from Lamouroux and Jowett (2005) (their Model 2).

Exponential function: HVij ¼ 1 þ Ci:exp K:Qij=Q95hi

� �

þ eij

Each function uses one fixed parameter (A for quadratic;
K for exponential) fitted across all reaches in the
hydrogeomorphic region and one reach-specific parameter
(B or C). The parameters for each function were fitted
simultaneously using a nonlinear mixed effects model
(NLME) package (Pinheiro et al., 2009; implemented using
R, version 2.11.1). The NLME method estimates parame-
ters that maximize the log likelihood (see Lindstrom and
Bates (1990) for NLME model formulation and computa-
tional methods). Having just one reach-specific parameter
(the ‘random’ parameter in NLME) provides a more
Copyright © 2013 John Wiley & Sons, Ltd.
parsimonious GHM, avoids parameter instability, and
isolates the response of Shape to morphological drivers. Both
the quadratic and exponential functions were parameterized
over a range of Q/Q95h from 0.1 to 1, aiming for 10 data
points per site and even distribution over the Q range.
The Bayesian information criterion (BIC) statistic

(Schwarz, 1978) was used to determinewhich of the two func-
tions provided a better fit to the data for each species and life
stage (i.e. model with the lowest BIC score), in addition to
reviewing plots of predicted versus observed values.
We therefore require two components to produce a habitat–

flow curve for each site: Q95h and Shape (B or C for Shape,
depending on which function is selected for the HSC). There-
fore, the next step was to predict the two components using
the desktop and rapid-survey variables. The predictor vari-
ables were transformed, if this improved normality, with
appropriate transformations judged using histograms, Shapiro’s
statistic and normal Q–Q plots (width was square-root
transformed; see Table II for other transformations). The two
components were modelled using a multiple linear regression
(‘lm’ function from the ‘stats’ package, implemented in R).
The best model for each was judged on the basis of the best
subsets analysis, which determined one combination of vari-
ables (from all possible) that produced the highest adjusted R2

for each number of variables (calculated in R using the ‘leaps’
package; Lumley, 2009). The BIC was then used to determine
howmany variables should be included in themodel (i.e. model
with the lowest BIC score), comparing only the best subset
models between each number of variables.
A bootstrap stepwise regression was then used to evaluate

the stability of the variables, under re-sampling of the
dataset, as this helps identify multicollinearity and strong
outlier influences [calculated in R using the ‘bootStepAIC’
package, to optimize the BIC from 500 replicates;
Rizopoulos, 2009]. Variable selection was reconsidered if
selected in less than 70% of the replicate models. Residuals
were also examined for the satisfaction of assumptions
(Neter et al., 1996), such as Q–Q plots for normally distrib-
uted residuals, and the F-statistics were checked (using the
‘summary’ function from the stats package in R). In most
cases, there was an obvious best model that was supported
by all statistics. Some level of judgement comes into play
when the various methods provide conflicting results; in
which case, we selected the model that could be best
explained mechanistically.
Two models were produced for the HSC. The first was a

desktop model based on the variables available for all
stream reaches in Colorado (Table II). The second was a
rapid-survey model using stream width plus the desktop
variables (excluding MAF as a correlate of width),
providing the option of more precise habitat predictions,
where needed. For each of these models, an explained
variance statistic was calculated to summarize model fit
River Res. Applic. (2013)
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and was calculated as the R2 value for predicted versus
observed habitat values for each flow increment from com-
bined reach data.
Validation

Both physical and biological validations were completed for the
GHMs. The physical validation used independent PHABSIM
studies (11 in total) for which only technical reports were avail-
able. These provided habitat–flow curves but not any survey
data that could be remodelled using standardized PHABSIM
settings and HSC. Most studies were completed by TetraTech
for Grand County (8 out of 11, accessed at http://co.grand.co.
us/GCHome/April-2008/Reach_Summaries/). The other three
studies were carried out by Miller Ecological Consultants
(Roaring Fork—Miller, 2009; Willow Creek—TetraTech
reports, and Colorado River—Miller, 2008).
This comparison introduced new sources of error, including

the HSC selected to represent trout (technical reports typically
did not quantify the HSC used). Of the HSC that we used, the
Cheesman HSC are likely to be more comparable with those
used in the technical reports than the size-guild HSC devel-
oped for our study. The validation focused on the Q95h
component, as it is more critical than the Shape component
in determining the prediction success (coefficient of variation
55–63% versus 2–17% for Shape).
The biological validation compared predictions from the

desktop models to trout abundance data obtained from the
Colorado Division of Wildlife (wildlife.state.co.us/Fishing/
Reports/FisherySurveySummaries accessed last July 2010).
This provided data for trout at 24 sites on 12 streams in
Colorado (sites likely biased to popular fisheries, access and
suitability for fishing methods). This analysis focused on the
number of fish per stream kilometre, because the alternative
metric of fish per unit area effectively factors out the variable
we are interested in—stream size. Data were available for two
size classes of fish (>127mm or> 356mm). Brown trout
were assumed to be better indicators of abiotic habitat,
because rainbow trout populations have been decimated by
whirling disease (Nehring and Walker, 1996). Annual fish
monitoring results were averaged for 2008 and 2009. The
HV was estimated at a flow of MAF/2, providing a measure
of hydraulic habitat at a typical flow for the river. Quantile
regression (Cade and Noon, 2003) was used to describe an
upper bound for the biological validation becausewe expect hy-
draulic habitat to act as a constraint on trout abundance rather
than the sole determinant of abundance (Dunham et al., 2002;
Milhous and Bartholow, 2006). Blossom Software (Cade and
Richards, 2007) was used to calculate a 90 percentile upper
bound and an asymptotic rank-score statistic.
To compare performance with the desktop models, the

correlation of trout abundance with the Tennant (1976)
method was also analyzed. The Tennant method
Copyright © 2013 John Wiley & Sons, Ltd.
recommended thresholds for summer flow expressed as a
proportion of MAF. To test the correlation of this method
with trout abundance, the observed summer flows were
divided by MAF for each site. We specified summer
baseflows as the August–September mean (after Binns and
Eiserman (1979)) and calculated the August–September
mean over the trout monitoring period plus the 5 years prior
(assuming 5 years since the conception of large trout).
Summer flow data were obtained from nearby gauges
(USGS and Colorado Division of Water Resources), with
some adjustments needed for the differences in location
(MAF was used to scale observed flows; Vogel et al., 1999).
RESULTS

Rapid-survey method

The breakpoint width, estimated from plots of width versus
average depth for 117 cross sections, provided a close
approximation of the width at MAF that was modelled from
a full PHABSIM survey (breakpoint width = 0.983 *width
at MAF, R2 = 0.975). Estimating the breakpoint width only
requires one site visit with no velocity measurements, and
this represents a reduction in survey effort compared with
PHABSIM.
For physical validation sites that lacked published cross-

sectional data, the width of unvegetated channel was
measured from aerial photographs. In a separate survey, this
method provided estimates within 2m of ground-surveyed
bankfull width (see Appendix 4 in Wilding (2012)).

Modelling generalized habitat

The following sections describe the prediction of Q95h and
Shape from the desktop and rapid-survey variables. The
validity of the models is then described in terms of physical
habitat predictions and correlations with trout abundance.

Q95h component. Models were developed to predict Q95h
(flow at 95% of maximum habitat) for unsurveyed reaches.
Of the desktop variables, MAF was included in all desktop
models (best of all subsets) and stood up to bootstrap re-
sampling (selected in >95% of replicate models; Table III).
The MAF alteration was the only variable to reliably explain
the residuals from MAF (reducing BIC for three out of four
HSC). MAF alteration provides a measure of how flow and/
or channel size may have changed from the natural
condition to what is observed at present. The North Fork of
the South Platte River was a major driver of this variable’s
selection, with the largest flow increase and the largest
outlier from the MAF predictions (increase in channel width
is visible from aerial photographs at the discharge point:
latitude 39.461, longitude �105.676). The inclusion of
MAF alteration in each model therefore depended on
River Res. Applic. (2013)
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including the North Fork. For this reason, MAF alteration was
selected in less than 70% of replicate models for the three HSC,
under bootstrap re-sampling of sites (Table III). But including
the North Fork reinforced a subtle relationship that was
visually apparent for the less altered sites, and the mechanism
is clear behind this relationship with bigger flows increasing
channel size.
The rapid-survey models outperformed the desktop

models for the prediction of Q95h (BIC average �74 for
rapid-survey, cf.�57 for desktop models; Tables III and IV).
Width at MAF was the first variable selected for all four
rapid-survey models and was the only variable selected
for three of the models (BIC statistic increased with
additional variables). Width provides a direct measure of
channel size, and hence, MAF alteration did not feature
as prominently in the width-based models (only included
in the T1 model; Table IV).

Shape component. Of the two functions evaluated, the
quadratic function provided a better fit to the data for the
adult trout (RT2, BT2 and T2), producing smaller BIC
values (quadratic BIC<�1000; exponential BIC>�1000),
higher R2 values (observed versus predicted R2> 0.996) and
a visually better fit to the data (Table V). In contrast, the
exponential function provided a better fit for juvenile trout
with lower BIC values than the quadratic function for T1
and BT1 (Table V).
The Shape component was then predicted for the HSC

(species/life stage) from the selected desktop and rapid-
survey variables using multiple linear regression (Table VI).
The Shape components did not vary markedly among sites
(coefficient of variation ranged from 2% to 17% for the
HSC), so it is perhaps not surprising that none of the HSC
produced significant models (at a= 0.05). The slope of the
river channel was the most commonly selected predictor
for Shape, with watershed slope included in models more
often than reach slope (correlation between reach and water-
shed slope R2 = 0.01).
An explained variance statistic was calculated to summa-

rize model fit to the training data, combining Shape and
Q95h across reaches for the HSC (R2 value for predicted
versus observed habitat values). The rapid-survey model
achieved 82–89% explained variance (BT2 85%, RT2
83%, T2 68%, T1 72%; n = 202 to 234), and the desktop
model 68–85% (BT2 89%, RT2 87%, T2 82%, T1 82%;
n= 202 to 234).

Physical validation

Predictions of the GHMs were compared with 11
PHABSIM studies that were only available as technical
reports. Plots of predicted versus observed Q95h indicate
the general agreement for the two HSC that were compared
(R2 ranged from 0.84 to 0.96; Figure 3).
Copyright © 2013 John Wiley & Sons, Ltd.
The rapid-survey models gave predictions that were
closer to the observed values than the desktop models
(median absolute difference for BT2 of 31% for rapid-survey
versus 47% for desktop; and for RT2 14% for rapid-survey
versus 40% for desktop). The desktop model consistently
overestimated Q95h for the validation sites (Figure 3). There-
fore, the rapid-survey model offers a worthwhile improve-
ment over the desktop predictions. The width estimates used
for most validation sites were actually measured from aerial
photographs rather than the survey data. This was necessary
because most technical reports only presented one cross
section (exceptions—Roaring Fork and Colorado River
CR7), and a sample of one is insufficient to calculate a
reach-average breakpoint width.
The full model prediction (Q95h and Shape) was com-

pared with the observed values for four randomly selected
sites (Figure 4). This displays prediction success in a more
familiar format of hydraulic habitat versus flow (akin to
PHABSIM output). The predictions for Williams Fork
BT2 had the largest departure from the observed Q95h (of
all the validation sites and HSC) and therefore represent
the worst-case scenario. Note that the full surveys offer
alternative reach estimates, each limited in their approxima-
tion of truth by sample replication (Payne et al., 2004; Gard,
2005; Williams, 2009; Ayllón et al., 2011). Roaring Fork
predictions improved drastically using the rapid-survey
model, instead of the desktop model (Figure 4), indicating
that the channel width is narrower than would be expected
from MAF. Model predictions for the CR5 reach of the
Colorado River compare favourably with both the PHABSIM
survey at the lower end of the reach and the River2D survey at
the upper end of the reach (Figure 4).
Biological validation

The abundance of all trout caught (>127mm) was poorly
correlated with both the BT2 and T2 predictions (Figure 5).
This indicates that there are unmeasured population
constraints. Some of these constraints might be revealed using
hydraulic habitat at flow extremes (e.g. annual low flows and
floods). At least we can say that the sites that supported the
highest abundances of trout (>2000 trout km�1) offered
near-optimal habitat at the MAF (Figure 5).
In contrast, the abundance of large brown trout

(>356mm) was significantly correlated with the predicted
habitat (Figure 6). High-value fisheries are distinguished
by the abundance of large trout, so this is an important
population metric. Both of the HSC for adult trout
(BT2 and T2) were correlated with trout abundance. The
T2 HSC were developed with better recognition of avail-
able habitat than BT2; however, the biological validation
results did not reveal a better correlation with trout
abundance using T2.
River Res. Applic. (2013)
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Table V. Function parameters fitted for the quadratic and exponential functions using nonlinear mixed effects model

Function BT2+ RT2+ T2+ T1+ BT1+

Quadratic
Fixed A �0.674 �0.697 �0.693 �0.635 �0.652
BIC �1174 �1030 �1209 �920 �553
Log likelihood 598 526 615 471 286
R2 (observed versus predicted) 0.9972 0.9966 0.9968 0.9884 0.9900
Exponential
Fixed K �2.492 �2.347 �2.349 �2.612 �2.615
BIC �986 �733 �871 �975 �592
Log likelihood 503 377 446 498 306
R2 (observed versus predicted) 0.9928 0.9827 0.9859 0.9914 0.9930

The Bayesian information criterion statistic (BIC) of the better fitting function is highlighted in bold (smaller BIC is better), together with other goodness-of-fit
statistics. Fixed parameters (A and K) are given in the top rows.

GENERALIZED HABITAT MODELS FOR TROUT

SRP16939
How does the GHM compare with existing regional
methods? The Tennant (1976) method is still commonly used
(Reiser et al., 1989) and arguably offers the only alternative
regional method for trout in the southern Rocky Mountains.
The observed Tennant flow metric (August–September flow/
MAF) was unable to explain much variation in the abundance
of small or large brown trout (Figure 7). There may be an
upper-bound response for trout >127mm but only if the
largest streams are excluded. The need to prune data indicates
the limitations of the method, which incorrectly assumes that
both small and large streams benefit equally from more flow.
Note that calculating August–September flows to test the
Tennant method required more effort to implement (sourcing
and analyzing gauge records) than the Colorado desktop GHM.
DISCUSSION

We achieved our objective of predicting the response func-
tion between hydraulic habitat and flow for trout in
unsurveyed streams, with the rapid-survey model achieving
82–89% explained variance and the desktop model 68–85%.
The desktop models employed variables that are readily
available for all Rocky Mountain streams to achieve better
correlations with trout abundance than the Tennant (1976)
method. In addition, the Colorado GHMs required less
survey effort than PHABSIM.
An important step in achieving these objectives was reduc-

ing the standard PHABSIM output to just two site-specific
components: the Q95h (flow at 95% of maximum habitat)
and Shape for a dimensionless function. There was little
variability in the Shape component, and hence, defaulting to
the average parameter value worked in the absence of an
adequate predictor.
Room remains for improvement in the Shape predictions,

but this is less critical for the model’s success than
predicting Q95h (the observed coefficient of variation for
Copyright © 2013 John Wiley & Sons, Ltd.
Q95h was at least three times greater than that of the Shape
component). In desktop models, the natural MAF (modelled
using data from less altered rivers; Vogel et al., 1999) was
an adequate predictor of Q95h, with small improvements
achieved for most models by using the per cent alteration
of MAF as a second predictor.
From the pilot studies, we observed that this combination

of natural MAF and MAF alteration performed better than
models that instead used existing flow. This is consistent
with Williams and Wolman (1984), whose best model for
bankfull width used both pre-dam (annual 1-day maximum)
and post-dam (MAF) flow metrics.
If channel-forming flows were less altered than MAF,

then existing channel morphology would not reflect the
existing MAF. These channel-forming flows are typically
much larger than MAF in cobble streams (e.g. Hey and
Thorne (1986) used bankfull discharge). Even for snowmelt
streams, such as those we studied, Ryan (1997) demon-
strated that large reductions in MAF (20% to 60% reduction
in annual yield) translated to small reductions in bankfull
width, where the large floods remained intact (~12 year
recurrence). There will be a relationship between natural
MAF and channel-forming flows across the southern Rocky
Mountains, unless large dams have altered the flood flow
regime. Therefore, the parameters for MAF alteration should
represent the autocorrelation between the alteration of MAF
and the alteration of channel-forming flows (minus any
temporal lag in channel adjustment; Petts, 1987).
The rapid-survey model provided better predictions of

Q95h than the desktop model. Measured width represents
the realized channel size, integrating the consequences of
transport capacity (flow regime and slope), sediment supply
and bank stability (Anderson et al., 2004; Flores et al.,
2006). Width was not considered a desktop variable, as
survey estimates of width at MAF (from PHABSIM) were
used to train the model. The demonstrated reduction in sur-
vey effort comes from the strong correlation between width
River Res. Applic. (2013)
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Figure 3. Predictions of Q95h (flow providing 95% of maximum
habitat), comparing predictions from the Colorado generalized hab
itat models with the observed values from the independent Physica
Habitat Simulation studies. Results for both the desktop (mean
annual flow ‘MAF’) and rapid-survey models (‘width’) are presented
for adult brown (BT2) and rainbow trout (RT2). Points would fall on
the 1:1 line if the predicted values matched the observed. The R2 fo
BT2 was 0.84 for desktop and 0.92 for rapid-survey; R2 for RT2 was

0.90 for desktop and 0.96 for rapid-survey

GENERALIZED HABITAT MODELS FOR TROUT

Copyright © 2013 John Wiley & Sons, Ltd.
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at MAF (full survey) and breakpoint width (rapid survey)
that approached a 1:1 relationship. Rapid-survey width is
estimated from plots of width versus average depth, so it
does not require velocity measurements or return visits. In
addition, the success of rapid-survey models in predicting
Q95h for validation sites was achieved using rapid-survey
estimates of width (i.e. not using width at MAF from
PHABSIM surveys). Surprisingly, the validation analysis
indicated that the estimates of channel width from aerial
photographs produced worthwhile improvements, compared
with the desktop model. The use of aerial photographs intro-
duces error at a cross section scale, but this error is offset at a
reach scale with more cross section replicates, unlimited
reach access and the ability to measure change in width over
time from historical aerial photographs (see Marcus and
Fonstad (2008)). Therefore, aerial photographs can alleviate
some of the sampling and scale issues discussed by Dunbar
et al. (2011) and Petts (2009). Better predictions are
dependent on adequate aerial photographs for the stream
of interest and are less useful for small streams where bank
vegetation conceals the channel (see Bird et al. (2010)).
The desktop model overestimated Q95h for most valida-

tion sites. Given that two decades separate most of the train-
ing site surveys from the validation site survey (median year
1985 and 2007, respectively), perhaps this overestimation
reflects a change in the relationship between a static estimate
of MAF and a varying channel size (sensu Milly et al.
(2008)). There is evidence that larger floods preceded the
earlier surveys of training sites, increasing channel sizes.
For example, the Yampa River (at USGS09251000) pro-
duced the highest 5-year mean flow on record for the period
1982–1986, compared with 2000–2004 that recorded the
second lowest flow. The rapid-survey models are therefore
expected to be more robust to global change than the
desktop models.
In addition to the dynamic predictions of the GHM

(habitat response to changing flow), the rapid-survey predictor
(width) can also be dynamic (e.g. model change in width with
change in peak flow using historical aerial photographs). This
presents an opportunity for evaluating the habitat response to
flow under some future scenarios of channel width (sensu
Carpenter (2002)), which is not offered by PHABSIM
(Petts, 2009). We can then take a step forward in our under-
standing but must add the uncertainty in how channel shape
changes with width to the long list of uncertainties for the
streams of tomorrow (see Brandt (2000) and ‘Channel
dynamics and stability’ section in Bovee et al. (1998)).
Neither the desktop nor the rapid-survey models assume
static ecosystems. It is up to the investigator to decide if
sustaining trout populations is a reasonable expectation
for a given site (see Wenger et al. (2011)), as dictated by
broader environmental constraints (Poff, 1997).
The predictive success that we achieved using the chosen

methods compares favourably with the results of similar
studies outside Colorado (Lamouroux and Souchon, 2002;
Lamouroux and Jowett, 2005; Booker and Acreman, 2007;
Saraeva and Hardy, 2009a). The New Zealand GHM by
Lamouroux and Jowett (2005) achieved an explained
variance of 73% for adult brown and 76% for rainbow trout.
For France, Lamouroux and Capra (2002) achieved an
explained variance of 89% for adult brown trout and 86%
for juveniles.
The variance explained by the Colorado models (rapid-

survey 82–89%, desktop 68–85%) approached the results
achieved by Lamouroux and Capra (2002) and exceeded
the results achieved by Lamouroux and Jowett (2005). But
note that the explained variance from the Colorado model
represents the end product, compared with Lamouroux and
Capra (2002) and Lamouroux and Jowett (2005), whose
values for explained variance exclude the added uncertainty
of estimating width (i.e. they predicted habitat versus unit-
width flow, not versus streamflow). It appears that a similar
River Res. Applic. (2013)
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Figure 4. Habitat–flow response curves for adult brown trout (BT2), comparing curves predicted from the desktop (mean annual flow ‘MAF’) and
rapid-surveymodels (‘width’) with the observed results from four surveys not included in the training dataset (compare the predicted lines with the
observed points). For Colorado River site CR5, the observed results are presented from both a Physical Habitat Simulation (PHABSIM) survey

and a River2D survey

T. K. WILDING ET AL.
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level of success was achieved here using less training data
and a demonstrated reduction in survey effort. We achieved
a similar level of prediction success for the validation sites
(mean 82% explained variance), despite estimating
stream width from aerial photographs (as surveyed width
data were unavailable).
The predictive success of GHMs for the Nooksack basin

(Washington, USA) by Saraeva and Hardy (2009a) was
evaluated using the root-mean-square error, for which they
achieved values often less than 15% (evaluated against the
training data). The equivalent root-mean-square error
Figure 5. Number of brown trout >127mm per kilometre versus the HV
dicted using the desktop generalized habitat model for size-guild adult tr
was used to describe an upper bound (90 percentile and a p-value of asym

and Richards

Copyright © 2013 John Wiley & Sons, Ltd.
calculated from all the Colorado validation sites was 15%
for BT2 and 18% for RT2. We attribute this success to
focusing on just one region (southern Rocky Mountains),
using dimensionless habitat (% of maximum), omitting
substrate/cover and focusing on sub-maximal flows.
Biological validation demonstrated the strength of the

Colorado GHM in explaining the number of large brown
trout (>356mm) per kilometre of stream. We believe this
correlation provides an appropriate measure of validity.
Trout abundance per kilometre of stream is an appropriate
metric for evaluating WUA (square metre of habitat
(hydraulic habitat value) at half the MAF (mean annual flow) pre-
out (T2, left plot) and adult brown trout (BT2). Quantile regression
ptotic rank-score statistic calculated using Blossom Software; Cade
, 2007)

River Res. Applic. (2013)
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Figure 6. The abundance of large brown trout (>356mmkm�1 with log transformation) versus the predicted HV (hydraulic habitat value) at
half the mean annual flow. Quantile regression was used to describe an upper bound (90 percentile and p-value of asymptotic rank-score

statistic calculated using Blossom Software)

GENERALIZED HABITAT MODELS FOR TROUT

SRP16943
per kilometre), in contrast to HSC or %WUA that should be
evaluated against trout density (number per square metre).
The HV metric that we used was validated against trout
per kilometre because the HV data were derived from
WUA data (habitat per kilometre standardized by maximum
habitat per kilometre). The correlation between trout density
per square metre and HV was not significant.
Figure 7. Brown trout abundance response to summer flow for al
trout caught >127mm (upper plot) and large trout >355mm
(lower plot). This is intended to compare the validity of the
Tennant (1976) method using the measured August–Septembe
mean flow divided by Vogel mean annual flow (MAF). A quantile
regression (90% percentile in dashed line) was performed exclud
ing large streams (>14m3 s�1) and excluding sites >125% o

MAF (p-value of asymptotic rank-score statistic: 0.041)

Copyright © 2013 John Wiley & Sons, Ltd.
l

r

-
f

The inclusion of small trout (127–356mm) introduced
substantial variability that the models could not explain.
This suggests that hydraulic habitat is a primary constraint
on a river’s carrying capacity for large trout, but numbers
of smaller trout are constrained by additional variables.
For example, floods impact the number of juveniles
(Nehring and Anderson, 1993; Latterell et al., 1998), and
Hayes et al. (2010) suggested that self-thinning of juveniles
in years with less flood disturbance can translate to inter-
year stability of age-2 brown trout. The poor prediction for
small trout might also reflect the more fundamental problem
raised by Railsback et al. (2003), where the HSC were
developed from juvenile trout forced into sub-optimal
habitats by larger trout. Problems with juvenile HSC are
further supported by the inferior fit of our Maxent HSC
models for juvenile trout compared with adult trout (area
under the curve values of 0.73 and 0.90, respectively;
Wilding, 2012). The obvious way around this problem is
to base the flow recommendations on adults rather than
juveniles. This is a useful outcome, given that flow man-
agers must ultimately choose a single flow value to apply
at any point in time.
There are several important caveats worth mentioning.

The GHMs were developed for Rocky Mountain streams
of Colorado. There are many important differences to other
regions that could invalidate the GHM (e.g. different
relationship between MAF and channel-forming flows and
different fish community). Within the Rocky Mountains,
small steep streams were poorly represented in the dataset,
so the models may produce misleading results for streams
with an MAF less than 0.6m3 s�1 and reach slopes greater
than 10%. Conservation populations of the native cut-throat
trout (Oncorhynchus clarkii) are now largely confined to
headwaters beyond the reach of introduced salmonids
(Peterson et al., 2004), and such streams are poorly repre-
sented by the GHMs. The quadratic function for Shape will
underestimate the habitat at flows greater than Q95h. Most
caveats that apply to PHABSIM (see Annear et al. (2004))
River Res. Applic. (2013)
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also apply to this GHM. For example, habitat–flow curves
are not a prediction of trout biomass. Instead, hydraulic
habitat is just one of several potential physical constraints
(e.g. flood disturbance and temperature) that operate at
different scales to determine population performance (Poff,
1997; Milhous and Bartholow, 2006).
Reaches surveyed for training and validating the model

were selected to answer specific flow management questions
rather than provide a random selection of Rocky Mountain
streams. This was demonstrated in our Maxent analysis that
revealed site bias to large, cool rivers. Even within the
population of large, cool rivers, reaches were not selected
randomly. We must therefore acknowledge the potential
for statistical tests to underestimate the true error in applying
the models to the population of Rocky Mountain streams.
Frameworks such as the Ecological Limits of Hydrologic

Alteration (ELOHA; Poff et al., 2010) provide the context
for the development and implementation of individual
flow–ecology methods, such as this GHM, at a regional
scale. The ELOHA framework formalizes the use of existing
data to develop multiple flow–ecology methods for specific
stream types that align with stakeholder objectives
(see Kendy et al. (2012) and Sanderson et al. (2012)).
Furthermore, New Zealand’s proposed national standards
for ecological flows spell out when GHMs can be used in
place of intensive surveys, depending on instream values
and flow alteration (see Appendix 4 in MfE, 2008). In the
absence of such specific guidelines for Colorado, the
GHM itself could be useful for deciding when to use
intensive surveys (e.g. if the GHM predicts substantial
reductions in habitat). The potential for developing more
biologically relevant metrics from existing remote-sensing
data using the Colorado GHM could also advance
regional-scale niche modelling.
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